Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study several variants of a combinatorial game which is based on Cantor’s diagonal argument. The game is between two players called Kronecker and Cantor. The names of the players are motivated by the known fact that Leopold Kronecker did not appreciate Georg Cantor’s arguments about the infinite, and even referred to him as a “scientific charlatan.” In the game Kronecker maintains a list of m binary vectors, each of length n, and Cantor’s goal is to produce a new binary vector which is different from each of Kronecker’s vectors, or prove that no such vector exists. Cantor does not see Kronecker’s vectors but he is allowed to ask queries of the form What is bit number j of vector number i? What is the minimal number of queries with which Cantor can achieve his goal? How much better can Cantor do if he is allowed to pick his queries adaptively, based on Kronecker’s previous replies? The case when m = n is solved by diagonalization using n (nonadaptive) queries. We study this game more generally, and prove an optimal bound in the adaptive case and nearly tight upper and lower bounds in the nonadaptive case.more » « lessFree, publicly-accessible full text available November 25, 2025
-
In this work we revisit an interactive variant of joint differential privacy, recently introduced by Naor et al. [2023], and generalize it towards handling online processes in which existing privacy definitions seem too restrictive. We study basic properties of this definition and demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing. In order to demonstrate the advantages of this privacy definition compared to traditional forms of differential privacy, we consider the basic setting of online classification. We show that any (possibly non-private) learning rule can be effectively transformed to a private learning rule with only a polynomial overhead in the mistake bound. This demonstrates a stark difference with traditional forms of differential privacy, such as the one studied by Golowich and Livni [2021], where only a double exponential overhead in the mistake bound is known (via an information theoretic upper bound).more » « less
-
Boosting is a celebrated machine learning approach which is based on the idea of combining weak and moderately inaccurate hypotheses to a strong and accurate one. We study boosting under the assumption that the weak hypotheses belong to a class of bounded capacity. This assumption is inspired by the common convention that weak hypotheses are “rules-of-thumbs” from an “easy-to-learn class”. (Schapire and Freund ’12, Shalev-Shwartz and Ben-David ’14.) Formally, we assume the class of weak hypotheses has a bounded VC dimension. We focus on two main questions: (i) Oracle Complexity: How many weak hypotheses are needed in order to produce an accurate hypothesis? We design a novel boosting algorithm and demonstrate that it circumvents a classical lower bound by Freund and Schapire (’95, ’12). Whereas the lower bound shows that Ω(1/γ2) weak hypotheses with γ-margin are sometimes necessary, our new method requires only Õ(1/γ) weak hypothesis, provided that they belong to a class of bounded VC dimension. Unlike previous boosting algorithms which aggregate the weak hypotheses by majority votes, the new boosting algorithm uses more complex (“deeper”) aggregation rules. We complement this result by showing that complex aggregation rules are in fact necessary to circumvent the aforementioned lower bound. (ii) Expressivity: Which tasks can be learned by boosting weak hypotheses from a bounded VC class? Can complex concepts that are “far away” from the class be learned? Towards answering the first question we identify a combinatorial-geometric parameter which captures the expressivity of base-classes in boosting. As a corollary we provide an affirmative answer to the second question for many well-studied classes, including half-spaces and decision stumps. Along the way, we establish and exploit connections with Discrepancy Theory.more » « less
An official website of the United States government

Full Text Available